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OF POOR QUALITY

1 Introduction

Non-topological solitons(NTSs) are extended objects that arisein theories with un-

broken global symmetries [1,2].The simplest example of a NTS is the so-caLledQ-baU

that can appear in a U(1)-invariant theory with a singlecomplex scalarfield@ that has

non-linear self-interactions [1,3,4]. The results for Q-balls found in the literature may be

applicable to models that possess an unbroken global 0"(i) symmetry such as B - L. In

thispaper we study the propertiesof Q-ballsin a localor gauged U(1) theory. Our work is

a firststep in understanding how NTSs might arisein gauge theories such as electromag-

netism, the Weinberg-Salam model, or Grand Unified Theories (e.g.,S0"(5),SO(IO),Es).

ANTS is a non-dissipative solution to the classicalfieldequations that, for fixed

charge Q, represents the fieldconfiguration with the lowest energy. For the Q-ball, the

basic structureisvery simple. Outside the Q-baLl,U(1) isunbroken and @ particleshave

mass/_ (thisis the true vacuum of the theory). Inside the Q-ball, 0"(I)is broken and a

condensate of the @ fieldforms with an energy per unit charge lessthan/_. Furthermore,

the time-dependence of the @ fieldgives riseto a non-zero charge density. The negative

pressure ofthe falsevacuum interiorisbalanced by the positivepressure from the confined

@ particles(forpossible creation mechanisms see [5]).

Coupling of _ to a U(1) gauge fieldleads to two basic effects.I) Insidethe Q-baJ.l,the

U(1) symmetry is broken and the gauge fieldhas a mass my. For Q-balls that are large

compared to the Compton wavelength of the gauge field(_ - zn_z),the charge ispushed

to the surfaceof the Q-ball and the characteristicwidth of the shellin which most of the

charge residesisO(m_1). Itisin thislimitthat the Q-ball becomes auperconducting. For

small Q-balls,the charge is only slightlyenhanced near the surface. These resultsaxe a

clearsignalthat the Q-ball is behaving likea lump of superconducting matter (which it

must since U(1) is broken insidethe Q-bat1). 2) Gauged Q-balls can only be so big.

For smMl enough values of the charge Q and gangc coupling e, the 'electrostatic'

energy of the Q-ball [=O(e2Q_/R)] issmaller than the other energies in the problem and

thereforewe expect stablegauged Q-baLlsto exist.Suppose we fixe but slowlyincrease Q

by bringing charges (i.e.,free_ particles)to the surfaceof the Q-ball from very far away.

For some value of Q(- Q,,_,=)the cost in Coulomb energy for adding an extra unit of



charge becomes greater than the energy gained by bringing it from the true vacuum to the

false vacuum. From this point on it becomes energetically favorable to leave additional

charges as free ¢ particles. A corollary of this result is that for large enough values of e

there are no stable Q-balls. As will be discussed below, very small Q-balls are unstable

and evaporate into free particles. Therefore, stable Q-balls must have charge greater-than

some value Q,_i,_. If Q=,.= < Q=i,_ then there are no stable Q-balls.

The fact that there is a maximum value for the allowed charge of a gauged Q-ball

points to a fundamental difference with the ungauged (e = 0) case. In the e = 0 case, it

is possible to have bulk Q-matter occupying an arbitrarily large region of space. This is

impossible in the gauged case.

An outline of the paper is as follows: In Section II we describe the particle physics

setting for gauged Q-balls. We review the basic properties of ordinary (e = 0) Q-balls

and derive some general properties of gauged Q-balls. In Section III, we study gauged

Q-balls using trial functions for the fields. The calculations are carried out for thin

shell Q-balls and ones in which the gauge coupling and charge are assumed to be small.

[How small will be made explicit below.] Section IV is devoted to numerical results.

The equations of motion are numerically integrated on computer and some solutions

are obtained. When appropriate, these results are compared with the analytic results

obtained in the preceeding sections. In Section V we consider solitons with fermions that

are coupled to a U(1) gauge field. Finally, in Section VI, we summarize and discuss our

results.

2 General Setting

Consider a complex scalar field ¢(_',t) = f(_',t)exp(iS(_',t))/v_ coupled to a U(1)

gauge field A_,. The Lagrange density for the theory is

£ = l o_,fO_'f + l f_(O_,O- eA_)' - U(f) - l F_,_F_"_ (2.1)

where F,_ = cg,A_ - O_A_, and U(f) is the U(1)-invariant scalar potential. [For definite-

ness, we take e > 0.] The conserved charge associated with the U(1) symmetry is

Q = fd3rf2(O - eAo) (2.2)

ORIGIr-_AL PAGE IS
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where the dot means d/dt. For definiteness, we shall take Q to be positive.

We begin by reviewing the basic properties of ordinary (e = O) Q-balls. We assume

that in the true vacuum U(1) is unbroken, so that the absolute minimum of the potential

U(f) occurs at f = O. The mass/_ of a free ¢ particle is given by

d2a !=o" (2.3)/z2 -- df 2

A necessary condition [4] for the existence of Q-balls is that

for some f = Fo with Fo finite and non-zero and 0 < _Oo < _. For large enough Q, the

lowest energy state is a coherent configuration of the boson field ¢ confined to a finite

spatial region. Following Coleman[4], we refer to this object as a Q-ball.

In order for a Q-ball to be stable against dispersion into free particles, its energy must

be less than the energy of Q free particles. Consider a field configuration where inside

some volume V, f has a constant value F and 8 = wt + Oo where 80 is a disposable

constant. Outside of V, f = 0. For large enough V (or Q) we can neglect the surface

energies and treat f as a step function at the boundary of V. The total conserved charge,

which characterizes the system, is Q = wF2V. The total energy is then

Q2
E- 2F2V + U(F)V. (2.5)

We minimize the energy with respect to V and find that

V = Q (2.6)

_/2PU(F)

and so the energy becomes

(2.7)
E"-c4 v _ •

Next, we minimize E with respect to F keeping Q fixed and find that F = Fo (cf.

Eqn.(2.4)). For F = Fo, the energy of the Q-ball is E = woQ. With w0 < tz, the Q-

ball has lower energy than the energy of Q free particles and is therefore stable against

dispersion. The negative vacuum pressure -U(Fo) is balanced by the positive 'kinetic'

3
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pressure, O;oF2o/2. Assuming that there is no further complexity in the potential (e.g

coupling of $ to light fermions [6]), Q-balls will be absolutely stable.

The result E = WoQ is valid only for very large Q-balls. For small Q-balls where

surface energies are important, E can be much larger than WoQ and can in fact be larger

than #Q. In general there is a lower bound on the allowed values of Q for stable Q-balls.

However, even for a large Q-ball, the surface energy is important as it determines the

shape of the configuration. Since the surface energy is minimized by choosing, for a fixed

volume, the shape with the smallest surface area, the groundstate Q-ball is a sphere.

We now consider gauged U(1) Q-balls (e :# 0) where $ is coupled to the gauge field

A, as in Eqn.(2.1). One expects gauged Q-balls to be stable as long as their electrostatic

self-energy is much smaller than the other energies. As before, f is non-zero and U(1) is

broken inside the Q-ball. As a consequence of the symmetry breaking, the gauge field is

massive inside and the Q-ball is a U(1) superconductor.

Consider a coherent configuration of $ and A_, with a given electric charge eQ. The

lowest energy state will have no 'electric' currents and therefore no magnetic field. Fur-

thermore, the lowest energy configuration will be spherically symmetric and stationary.

For this configuration one can choose a gauge such that 0 = o.,t (0o = 0) with w constant

and A0(r) --* 0 as r _ oo where r = 14. For definiteness, we assume that _ > 0. The

spatial components of the gauge potential are zero as there is no magnetic field. With

the exception of 0, the fields are time independent.

The Lagrangian for the configuration described above is

/ [ lf,2 1 ,2 u(f)] (2.s)

where g(r) = _,, - eAo(r) and prime denotes d/dr. By varying L with respect to f and g

at fixed w we find the equations of motion:

f,, + 2_f, + fg 2 _ dU(f)/ttf = 0 (2.9)

g,, + 2g,_ e2ffg = 0. (2.10)
r

The total energy and charge are given by

[21- _e2gl ,2 _rl_22g +U(f)] (2.11)E=4 [ 2d f,2+ +
d
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4_r J r_drf29 (2.12)Q

Eqn.(2.10) was derived by varying L with respect to A0. Since ,'_0 does not appear in the

Lagrangian, we must treat Eqn.(2.10) as a constraint equation rather than a dynamical

one. Eqn.(2.9) can be obtained by varying the energy in Eqn.(2.11) with respect to f

under the constraint Eqn.(2.10).

Some qualitative features of the soliton solutions are readily apparent. From Eqns.(2.10,

2.12) we see that

:Q = lira 4_:g'. (2.13)

For large r, g _ w- e2Q//47rr, f is small and U(f) __/z_f2/2. Eqn.(2.9) then becomes

2:, =f"+ + (: -/:)f o (2.14)
T

and f c¢ exp(-rv//_ 2 - w2)/r. For the existence of a localized solution without oscillations

we require w < #. Additionally, for the solution to be well behaved at the origin, if(r)

and gr(r) should approach zero at least faster than r for r ---+0.

We now show that g(r) obeys the following inequalities:

0 < g(0) < g(r) < g(_) = _ < ,.

It is convenient to write Eqn.(2.10) in the following form:

(r2g')' = e'r2f29.

(2.15)

(2.16)

We will first prove that 9(0) > 0. Suppose that g(0) = 0. Since g'(0) = 0, then g(r)

would be zero for all r. Suppose instead that g(0) < 0. Eqn.(2.10) then implies that r_g '

is a decreasing function of r so that 9'(r) goes negative and g(r) < 0 for all r. Neither of

these possibilities are acceptable given that w > 0 and g(r) --4 w for r ---+ _. The only

acceptable possibility is that g(0) > 0. We then see that g'(r) is positive and therefore

g(r) is a monotonically increasing function of r.

Let us consider a different form of the energy integral. After partial differentiation

and using the asymptotic behavior of f and g, Eqns.(2.11,2.12) lead to the new energy

functional

1 U(f)] (2.17)E = _wQ + 4_ f drr' [_/'2 +
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where the constraint Eqn.(2.10) is satisfied. Eqn.(2.9) need not be satisfied. However,

the energy is minimized by choosing f to be a solution of Eqn.(2.9).

Demanding that the Lagrangian (2.8) for the solution is stationary at _ = 1 under

scaling of the form r ---* _r leads to the following relation

When used together with Eqns.(2.9-2.12) and the asymptotic forms for f and 9, the

energy can be rewritten as

4rr [f,_ g,2]E = ._Q + -5- f drr_ - " (2.19)

Consider the case e = O, so that g' -- O. In the thin wall approximation we can neglect

the gradient f,2 term. We then see that E = wQ. It follows that for thin shell Q-balls

with e ¢ 0 the energy is generally bounded from above by wQ and is less than #Q if

¢o<#.

Recall that our goal is to find the lowest energy configuration for a given value of the

charge Q. One possibility is to have Q free particles of mass #, the total configuration

having mass #Q. A second possibility is to have a soliton with charge Q. In this case, the

energy is a very complicated function of the charge. For e = 0 we know that E --_ woQ

for large Q so that for Wo < /_ this configuration is favored over the free particle one.

For e ¢ 0, we expect that the energy will be increased over the e = 0 case due to

Coulomb repulsion with Coulomb energy becoming more important as Q gets large. For

OE/OQ >/_ we must consider a third possibility, namely that some of the charge can be

put into the Q-ball and some can be put in free particles. Suppose that there exists a Q

(-- Q=_.) such that for Q > Q_,.:, OE/OQ > # while OE/OQ < # for Q < Q,-,,_. For

Q > Q,,,_z, a Q-ball with charge Q,.,.z plus Q - Q,,_.. free particles will be the lowest

energy state for the system.

As discussed above, in very small Q-balls surface energies are important and the Q-

balls are generally unstable and disperse into free particles. There is therefore a minimum

value allowed for the charge which we define to be Q,_i,,. If the gauge coupling is large

enough, Q,,_,: wiU be less than Q,,_i,_, and there will be no stable Q-balls
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Clearly, in order to understand gauged Q-balls, we need to determine E as a function of

Q. We can do this analytically, but only in the thin wall approximation (i.e., neglecting

surface energies) and for small values of e and Q. On the other hand, we can obtain

better results numerically. The results obtained from these two approaches are presented

in Sections III and IV respectively.

3 Thin Wall Approximation

In this section, we study properties of gauged Q-balls by considering trial functions for

the fields. More specifically, we choose a simple trial function for the field f and solve for

A0 (or equivalently, g) using the constraint Eqn.(2.10). These functions can be thought

of as an initial configuration for the Q-bail, and will in general have greater energy than

the true groundstate configuration. [Recall that for the true groundstate configuration,

the fields satisfy their equations of motion, Eqns.(2.9,2.10).] As we shall see in the next

section, for a certain range of parameters, the trial functions used here closely approximate

the actual solutions.

We choose f to have a constant value F inside a sphere of radius R and zero outside.

In real solitons, f changes continuously from F to 0 within a shell of some finite width

T. For large Q-balls (width of the shell much less than the radius of the Q-ball) the

energy associated with the shell is negligible (the shell energy is of order T/R of the

total energy). In this limit we can treat f as a step function and discard the f,2 term in

the energy density. This is the thin wall approximation. A0 or equivalently g must be

determined by solving the constraint Eqn.(2.10). We find that

[w- e2Q/47rR] Rsinh(eFr)/rsinh(eFR) r <_ R= > R (3.1)

where the gauge is chosen so that A0 _ 0 for r _ o¢. The system is now determined by

four parameters, w, Q, F, and R. In the following, we will determine the values for w, F,

and R that minimize the energy given a fixed Q.

Eqn.(2.12) for the charge gives one relation among these four parameters:

e2Q 1 tanhz (3.2)
w- 4_rR z
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where x = eFR. We can use this expression to eliminate w from E in Eqn.(2.171.

e_Q _ tanh x 4_"
E- 87rR 1 z +--R3U(F)3 (3.3)

Minimizing the energy with respect to R (or z) for fixed Q and F gives an expression for

z in terms of Q and F:
X

z [tanhz 1]- eaQF2
4 _----'2_F) (3"4/

In principle, one can use this expression to eliminate R (and _) from the expression for

the energy. The result would be an expression for the energy in terms of Q and F. The

final steps are to minimize the energy with respect to F for fixed Q and to then eliminate

F. The result is the desired expression for E in terms of Q.

Unfortunately, Eqn.(3.4) is a transcendental equation for R in terms of Q and F and

exact results from this point on are difficult if not impossible to obtain. We can however,

carry out the above steps for the case where z << 1. As we shall see, x <_ 1 implies

that the Coulomb energy is small compared to the potential and kinetic energies. In this

regime, the radius and total energy of the groundstate Q-ball differ from the e = 0 case

by terms of order x _. _,Ve now proceed to calculate these corrections.

For small x, Eqn.(3.4) becomes

(x a 1 - _ = e3QC (3.5)

or

R( 3 11J3(= 1+ (3.6)
4=F /

where C - 3F(F2/2U(F))I/2/4zr. For most of the potentials that we will consider, C is

of order unity. Our expansion is therefore valid for x _. Note that when e = 0 we recover

the result for the radius of ordinary Q-balls (Eqn.(2.6) with V = 47rRa/3).

We can use Eqns.(3.5,3.6) to eliminate _ and R from Eqn.(3.3) to obtain

" (l +e Q bC2/ ) (3.7)V

Again, when e is set to zero we recover the result for the energy of ordinary Q-balls,

Eqn.(2.7).

8



OF _" .... :? :! '-/

Let us assume that the function U/F 2 is minimized by choosing F = Fo (Cf. Eqn.(2.4)

in the case where e = 0). The energy in Eqn.(3.7)is minimized for F - Fo(1 - A) where

(2Q (3.8)

In deriving Eqn.(3.8) we have made use of the fact that O(U/F2)/OF = 0 when evaluated

at F = To. By substituting F = Fo(1 - A) into Eqn.(3.7) we obtain the desired expression

for E in terms of Q. Likewise, we can use Eqn.(3.8) together with Eqn.(3.6) to find

R = R(Q). Eqn.(3.7) can be put into the following suggestive form:

2uriC(F) 3e_Q2 (3.9)
E=Qv _ + 20_-----R"

The first term is the energy of the Q-bail neglecting gauge interactions. The second term

is the electrostatic self-energy of the Q-ball, with e2Q:/8_rR being the electrostatic energy

in the region r > R and e2Q2/40_rR the electrostatic energy for r < R. Also in the small

approximation the first term is the leading order term. The second term is O(z2).

In order to better understand the above results, we consider the following form for the

potential:

A2fs f4 #:f2 (3.10)
u(/) = 6,_ 4 + -Y-

where A is a dimensionless constant and _ is again the mass of a free ¢ particle. We require

that As > 3/16 so that U(f) > 0 for all f ¢ 0. As discussed above, a necessary condition

for the existence of Q-balls is that the function U(f)/ff has a minimum for some non-zero

f. lit is for this reason that we must consider sixth (or higher) order potentials.] This is

always true for the above potential and the minimum occurs at Fo = v/3/_/2A. Note that

the existence of Q-balls does not depend on the metastable false vacuum which exists

when A2 < 1/4.

For ordinary (e = 0) Q-balls with an effective potential for ¢ described by Eqn.(3.10),

we get

E = #aQ (3.11)

where_ = (1 - 3/16A_)'/_ = _o/_. Indeed,this energyis lessthan _Q, the energyof Q

free ¢ particles. The energy gained by bringing a single ¢ particle from the true vacuum

to the false vacuum is just/_ [1 - a].



ORIGINAL PAGE IS

OF POOR QUALITY

Given the potential, we can readily evaluate the quantities discussed above. We find

that

2 (e3Q '_2a2)A=I- _ _.

The energy in terms of Q is given by

E =/laQ

213

(3.12)

1 ÷_-_ \_--_a/ " (3.13)

Finally, the radius is given by

#al/3 i+Tg\ _-_/ ]
(3.14)

For a given charge Q, we see that both the radius and the energy are larger in the

gauged case than in the e = 0 case.

Let us now determine Q,,_., the maximum allowable charge for stable gauged Q-balls.

From Eqn.(3.13), we find that

O--Q= #a i+ _ \_---A_a/ ' (3.15)

We solve for Qm=, by setting this equal to #:

8_rA (i- a) a/2 (3.16)
Q,,,,,.- e3o_l/2

Using Eqn.(3.14), we can rewrite this expression in a more transparent form:

e2Qma¢
- _[i- _] (3.17)

4_-R

The left-hand side is just the cost in energy due to Coulomb-type forces for bringing

a particle to the surface of the Q-ball from very far away. The right hand side is the

energy gained (when the Coulomb energy is neglected) in bringing a particle from the

true vacuum into the false vacuum Q-ball interior. As stated above, and verified by

Eqn.(3.17), Q,,_=, defines the value of Q where it becomes energetically favorable to keep

additional charges outside and far away from the Q-ball.

Of course Eqns.(3.12-3.17) are valid only when x is small. Recall that to leading order

4w \2U(F)] "

i0
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For the potentiaa Eqn.(3.10), we have that

xa= 3v_e3Q (3.19)
8_'Aa

At Q = Q,,_o., x = [3(1-a)la] 1/_. It therefore follows that x < 1 for a > 3/4 or

A2 > 3/7.

From Eqns. (3.16) and (3.17) we can get the maximum radius for this configuration,

p_. = 2A /l - a (3.20)
#ey a

In order to interpret the breaking of the U(1) symmetry inside the Q-ball as super-

conductivity, we need to compare the/_,z with the penetration length _ associated with

the mass of the photon (or equivalently, the Compton wavelength of the gauge field in a

region where the U(1) symmetry is broken). We find that

I I 2A

- mv eFo V%e (3.21)

By comparing this with R_=, we get,

3
a > - =_ _ > P,_,,.. (3.22)

-4

We see that the results in this section are valid only in the regime where the penetration

length is greater than the radius. In this regime, the charge distribution is roughly uniform

being only slightly enhanced near the surface of the Q-bail.

_Ve conclude this section by considering the potential Eqn.(3.10) with A_ = 3/16. As

we now show, in this case _ << /_,= and the Q-ball is superconducting. For this case,

= 0 and the "false" vacuum (F = Fo = 2/z) is degenerate with the "true" vacuum

(F = 0). The potential energy is therefore zero inside as well as outside of the Q-ball and

is non-zero only in the shell in which F changes from 2# to 0. Let T be the thickness

of this shell and R be the radius of the Q-ball. From Eqn.(2.11) we find the following

approximate expression for the energy:

where

e Q2(x2Ai l)- T + _ 1 + 2 + 7rR2TIZ t (3.23)

A(z)= ( tanhz _2 1 (3.24)

11
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Eqn.(3.23) deserves some explanation. First, we note that each of the terms in this

expression is accurate only up to numerical factors of order unity. The first term is the

scalar gradient term where we have set f' = Fo/L = 2#/L. The second and third terms

are the Coulomb and f292 terms respectively. The last term is the potential energy in

the shell where the average energy density in the shell is taken to be #4/4.

Minimizing the energy with respect to T we find that T = 2v/2/I -i. Substituting this

into Eqn.(3.23) we find an expression for E in terms of R and Q. Let us now assume that

>> 1. We will check this assumption at the end of the calculation. For z >> 1 we find

that A(z) __ x -_ and

e_Q2 ( 1) (3.25)E__4v_r#3R 2+_ 1+_ .

Minimizing this expression with respect to R we find that

2-1/B(eQ  /3R - (3.26), \Gj
and

E 3

# - 21i167rlla (eQ) 413 . (3.27)

where we have only used the leading order terms. As before, we find Q,_== by solving

cOE/c_Q = #. We obtain
71"

Q_n_= = v/_e , (3.28)

For weak couplings this can be quite large.

Eqns.(3.23-3.28) are valid only for z >> 1 and we must check that this is indeed the

case. For Q = Q,,°=, x = (2v_e) -1, which is indeed greater than one for weak (e < 2 -3/2)

coupling. For stronger couplings or for smaller Q the large x approximation breaks down.

Finally, we compare the size of these Q-balls to the penetration length. From Eqn.(3.26)

we see that

1

.Rlq=cT,,,,.."- 4V,,_p,e 2 (3.29)

This is greaterthanthe penetrationlength = forweak(e < coupling.

It is in this limit that the interior of the Q-balls becomes superconducting. From Eqn.(3.1)

it is easy to see that the charge density at the center of the Q-ball is O(e -x) of the charge

density near the surface and the width T of the shell in which must of the charge resides

is of order (eF) -1 ,_ (my) -z as expected for a lump of superconductor.

12
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4 Numerical Results

In this section we present numerical solutions of gauged Q-balls. These results are

used to 1) verify the general properties of gauged Q-balls derived in Section II; 2) check

the accuracy of the thin wall approximation; and 3) explore properties of gauged Q-balls

that cannot be studied in the thin wall approximation.

The thin wall approximation discussed above is applicable to a rather limited set of

Q-balls. Specifically, the results of Section III are valid for Q-balls in which the surface

energy is small compared to the volume energy (i.e., the radius of the Q-ball is large

compared to the thickness of the shell within which f changes from F to 0). However,

for large values of e Q-balls have a maximum size that is small, so surface energies are

always important. Moreover, many of the results in Section III assume that z ¢:_ 1 where

x is given in Eqns.(3.18,3.19). This, for example, implies that the equations for Q,,_a= are

valid only for certain values of A. Because of the limitations of the thin shell analysis

(the only analytical approach that we found tractable) the numerical analysis for gauged

Q-balls is particularly important.

Consider the Lagrangian Eqn.(2.8) with the potential given in Eqn.(3.10). We scale

the dimensionful quantities f,O, and r by appropriate factors of #. In order to keep the

notation simple, we use the same symbols for the dimensionless quantities in this section

as we did for the dimensionful quantities in the previous sections (e.g., r here is equal to

r/# of Sections II and III). For physical quantities such as E, we write the factors of/_

explicitly.

From the Lagrangian and the potential we get the equations of motion

1 c3_

r Or 2(rf) = _g2f + (A_fs- fs + f) (4.1)

1 0 2

r Or 2 (rg) = e2gf 2 (4.2)

with the charge and the energy given by

Q = 47r [ drr2gf 2 (4.3)
J

1 4

E=4_r#fdee 2 [1(f,)_÷_e2(g,)_÷lf292 ÷ (1A2fs - _f ÷ 21___f,)1. (4.4)

13
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As discussed above, a finite energy Q-bail solution must satisfy f'(0) = g'(0) = 0 and

g(oo) < 1. Furthermore, a Q-bail solution with minimum energy for a given charge will

be non-oscillatory (zero node solution).

To find acceptable Q-bail solutions we numerically integrate Eqns.(4.1,4.2) from r = 0

to r = oo (or rather, to a point well outside the Q-bail, i.e., where f __ 0). [Recail_that

we required A_ > 3/16 so that U(f) > 0 for all r.] Eqns.(4.1,4.2) are equivalent to a

system of four first order differential equations. In order to find Q-bail solutions, we must

determine the boundary conditions (i.e., the values of f,g and their first derivatives at

r = 0). We know that f'(0) = 9'(0) = 0. Fixing 9(0) determines the charge, f(0) is then

adjusted to give a non-oscillatory solution with f(r) --* 0 for r --* oo. [For definiteness,

we choosef(0) > 0.1

Let us be more specific. For a given choice of f(0), f(r) will (1) grow without bound,

(2) become negative for some r, (3) change from a decreasing to an increasing function of

r, or (4) go smoothly to 0 a r --+ oo. Note that the gauged case differs from the ungauged

case in that f(r) can begin as an increasing function of r and then turn over and go

smoothly to zero at infinity.

In practice, a value of f(0) is selected, and the solution is integrated out until it

becomes clear which of the four types it belongs to. 1 or 2 type solutions indicate that

f(0) was too big while type 3 solutions indicate that f(0) was too small. The value of

f(0) is appropriately adjusted and the process is repeated until the desired accuracy is

obtained. The value of g(o¢) must then be checked to make sure it is less than 1. In Fig.1

we plot f(r) and g(r) as a function of r for a gauged Q-ball with e2 = 0.01 and Q - 104

For comparison, we show on the same plot f(r) and to for an ordinary (e = 0) Q-bail of

roughly the same charge. Note that g(r) is a monotonically increasing function of r as is

expected from Eqn.(2.15). In Fig.2, we plot the charge density p(r) = 2gf 2 as a function

of r for the gauged and ordinary Q-bails in Fig.1. While charge is distributed uniformly

inside the ordinary Q-bail, the charge is pushed towards the surface of the gauged Q-bail.

Note also that the radius of the configuration has grown compare to the e = 0 case.

In Fig.3, we plot E/#Q as a function of Q for various values of e. The unstable regions

discussed in the text, those where aE/c')Q >/z are now apparent. Note that as we increase

14
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the value of e 2, the instability occurs for smaller values of Q. _Ve also see that the slope

for the e = 0 case never changes sign, indicating the absence of an instability for ordinary

Q-balls. In Fig.4 we plot ](r) and g(r) for a Q-ball configuration using _2 = 0.64 and

e = 0.01. The charge for the configuration is 88,921. For comparison, we show the f(r)

and g(r) used in the thin shell approximation. This indicates that the analytic ansatz

used is not to far off. Finally, as mentioned above, there exists a value of e(= e_it) above

which Q,,,,= < Q,,,i,, For e > e_.it there are no stable Q-balls. In Fig. 5. we plot e_-it as a

function of _.

5 Gauged Nontopological Solitons with Fermions

The work presented above can easily be extended in a number of ways. The one we

chose was to add Fermions to the previous model. Here we study nontopological solitons

that occur when charged fermions are trapped inside a region of false vacuum[7]. Consider

a theory with a real scalar field o" and Dirac fermion field _b. The scalar potential is taken

to be

where we assume that _r = 0 is the true vacuum and cr = Cro is the false vacuum. The

Lagrange density for ¢ is

(°)l:¢=i_v"(O_,+ieA_,)¢-m 1-_o ¢¢ (5.2)

so that ¢ has mass m in the true vacuum and is massless in the false vacuum.

The case where • = 0 was considered by Lee and Pang[7] and we briefly review their

results before turning to the gauged case. Suppose there are N ¢ particles trapped in a

spherical region of false vacuum. The energy for the configuration is

- T --if- + T _°R " (5.3)

The first term is the fermi energy for the ¢ particles while the second term is the energy in

the surface of the soliton. [For the potential Eqn.(5.1) the false vacuum is degenerate with

the true vacuum and so there is no volume term in the expression for the total energy.]

15
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For fixed N the energy is minimized by choosing

9 (3_llaN 413"

At this radius, the energy of the soliton is given by:

E=

113

N819.

(5.4)

(5.5)

As discussed in [7], since the exponent of N is less than 1, solitons with large enough N

will have energy less than N free ¢ particles and will therefore be stable against dispersion.

More precisely, for N > (31%rs/219) (]ztr_/mS) z, E < Nm and the solitons would be stable

against dispersion into free particles.

Suppose now that the fermions are coupled to a U(1) gauge field A t, as in Eqn.(5.2).

The energy will be then given by Eqn.(5.3) plus a Coulomb term/3e2N2/R where _ is

a number of order 10 -1 that depends on the charge distribution of the fermions. [For

a uniform charge distribution, /3 = 3/20:r.] Again, we keep N fixed and minimize the

energy with respect to R. We find that

[ 3 1.44N413 + _e2N2] 1/3R = 4_" #tr_ (5.6)

and

E = (91r;°'2°)l13 (1.44N413 + /3eiN2)_/3 (5.7)

For stable solitons to exist, E <mN for some range of values of N. Clearly, this depends

on e, the ratio #o'_/m s and/3, e and #tr_/m s are model dependent parameters. /7 on the

other hand, depends on the structure of the soliton and must be determined by explidtly

solving for the soliton configuration. However, the exact value of/3 is not necessary for

the present discussion.

In Fig. 6 we show EINrn against N for two representative choices of e and t.ttr_/m z [one

in which stable solitons exist and the other in which they do not] and take fl = 0.048( _-

3/20_r). We see that fermion NTSs can occur even when the fermions are coupled to a

U(1) gauge field. As with gauged Q-bails there is a maximum charge. Furthermore, in

certain theories (c.f. example 2 in fig. 2) stable NTSs do not exist at all

16
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6 Summary and Discussion

Solitons, whether topological or nontopological, may be interesting for cosmology as

well as particle physics. The cosmological implications of topological solitons such as do-

main walls, cosmic strings and magnetic monopotes have been studied for some time. On

the other hand, the cosmological significance of nontopological solitons has been consid-

ered only recently. The discovery of a relic abundance of NTSs would be clear evidence

for a phase transition in the early Universe and therefore have important implications for

particle physics. Moreover, NTSs are potential candidates for the dark matter in galactic

halos [5]. It is therefore of great interest to explore the possible particle physics theories

in which NTSs might arise.

NTSs occur in theories with a continuous symmetry and therefore a conserved Noether

charge. Previous investigations of NTSs have, for the most part, concentrated on theories

with global symmetries. However, many of the theories that we know of (or at least believe

in) involve gauge or local symmetries. In this work, we have considered NTSs (Q-balls)

in the simplest gauge theory; namely, one with a local U(1) symmetry.

For fixed charge, the NTS is the groundstate configuration. Stability against dispersion

into free particles is demonstrated by computing the energy of a soliton solution of charge

Q and comparing this with the energy of Q free particles. Stability against fission, evap-

oration of charge from the surface [6,8], and gravitational collapse must also be checked

[9]. The existence of stable NTSs therefore depends on particle physics phenomenology

such as the shape of the scalar potential or the coupling of scalars to fermions. This is

in contrast to topological solitons where existence and stability are determined from the

symmetry breaking pattern of a given theory [e.g._ stable vortices or cosmic strings occur

in any theory in three spatial dimensions in which a U(1) symmetry is spontaneously

broken].

Coleman [4](see also Rosen [3]) has demonstrated the existence of stable NTSs or

Q-balls in a theory with a single complex scalar field and a global U(1) symmetry. We

have considered a similar model but with a local U(1) symmetry and find that gauge

interactions affect the structure and stability of the Q-ball in a physically intuitive way.

For small gauged Q-balls (R << m_ 1) the configuration is perturbed only slightly from
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the e = 0 case with a small charge enhancement near the surface of the Q-ball. For larger

Q-balls (R >> mv 1) most of the charge is distributed at the surface. This is consistent

with the fact that the interior of the Q-ball is superconducting. Furthermore, there is

a maximum size for stable Q-balls which occurs once the Coulomb barrier becomes too

large. Finally we recall an important difference with the e = 0 case; the fact that.it is

impossible to have gauged Q-matter.
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Figure Captions

Fig.1 Plot of the scalar field .f(r) and the gauge field g(r) - w - eAo as a function of r.

The solid lines are for e_ = 0.01 with Q = 11,119. The dashed lines are for e = 0

with Q = 10,941. For both cases, we have set _ = 0.2.

Fig.2 Plot of the charge density p(r) m 2g f2 as a function of r for the two field configu-

rations plotted in Fig.1. Notice that in the gauged case, the charge accumulates at

the boundary of the Q-ball.

Fig.3 Plot of E/IzQ as a function of Q with A_ = 0.20 for various values of e.

Fig.4 Plot of f(r) and g(r) (solid lines) for a Q-ball configuration with A_ = 0.64 and

e 2 - 10 -4 . Q for the configuration shown is 88,921. The dashed lines are the

corresponding f(r) and g(r) used in the thin wall approximation.

Fig.5 Plot of e_it as a function of A. As discussed in the text, for e > e_it there are no

stable Q-balls as Q,_z is less than Q_,_,_.

Fig.6 E/mN as a function of N for the fermion ball.
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